Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 186(7): 1448-1464.e20, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001504

RESUMEN

Neutrophils accumulate in solid tumors, and their abundance correlates with poor prognosis. Neutrophils are not homogeneous, however, and could play different roles in cancer therapy. Here, we investigate the role of neutrophils in immunotherapy, leading to tumor control. We show that successful therapies acutely expanded tumor neutrophil numbers. This expansion could be attributed to a Sellhi state rather than to other neutrophils that accelerate tumor progression. Therapy-elicited neutrophils acquired an interferon gene signature, also seen in human patients, and appeared essential for successful therapy, as loss of the interferon-responsive transcription factor IRF1 in neutrophils led to failure of immunotherapy. The neutrophil response depended on key components of anti-tumor immunity, including BATF3-dependent DCs, IL-12, and IFNγ. In addition, we found that a therapy-elicited systemic neutrophil response positively correlated with disease outcome in lung cancer patients. Thus, we establish a crucial role of a neutrophil state in mediating effective cancer therapy.


Asunto(s)
Neoplasias Pulmonares , Neutrófilos , Humanos , Neoplasias Pulmonares/genética , Transducción de Señal/genética , Inmunoterapia , Interferones
2.
Theranostics ; 13(1): 355-373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593955

RESUMEN

Rationale: Nanobodies (Nbs) have emerged as an elegant alternative to the use of conventional monoclonal antibodies in cancer therapy, but a detailed microscopic insight into the in vivo pharmacokinetics of different Nb formats in tumor-bearers is lacking. This is especially relevant for the recognition and targeting of pro-tumoral tumor-associated macrophages (TAMs), which may be located in less penetrable tumor regions. Methods: We employed anti-Macrophage Mannose Receptor (MMR) Nbs, in a monovalent (m) or bivalent (biv) format, to assess in vivo TAM targeting. Intravital and confocal microscopy were used to analyse the blood clearance rate and targeting kinetics of anti-MMR Nbs in tumor tissue, healthy muscle tissue and liver. Fluorescence Molecular Tomography was applied to confirm anti-MMR Nb accumulation in the primary tumor and in metastatic lesions. Results: Intravital microscopy demonstrated significant differences in the blood clearance rate and macrophage targeting kinetics of (m) and (biv)anti-MMR Nbs, both in tumoral and extra-tumoral tissue. Importantly, (m)anti-MMR Nbs are superior in reaching tissue macrophages, an advantage that is especially prominent in tumor tissue. The administration of a molar excess of unlabelled (biv)anti-MMR Nbs increased the (m)anti-MMR Nb bioavailability and impacted on its macrophage targeting kinetics, preventing their accumulation in extra-tumoral tissue (especially in the liver) but only partially influencing their interaction with TAMs. Finally, anti-MMR Nb administration not only allowed the visualization of TAMs in primary tumors, but also at a distant metastatic site. Conclusions: These data describe, for the first time, a microscopic analysis of (m) and (biv)anti-MMR Nb pharmacokinetics in tumor and healthy tissues. The concepts proposed in this study provide important knowledge for the future use of Nbs as diagnostic and therapeutic agents, especially for the targeting of tumor-infiltrating immune cells.


Asunto(s)
Neoplasias , Anticuerpos de Dominio Único , Humanos , Receptor de Manosa , Lectinas Tipo C , Lectinas de Unión a Manosa , Receptores de Superficie Celular , Macrófagos Asociados a Tumores , Neoplasias/tratamiento farmacológico
3.
Nat Biotechnol ; 40(11): 1654-1662, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35654978

RESUMEN

Cells in complex organisms undergo frequent functional changes, but few methods allow comprehensive longitudinal profiling of living cells. Here we introduce scission-accelerated fluorophore exchange (SAFE), a method for multiplexed temporospatial imaging of living cells with immunofluorescence. SAFE uses a rapid bioorthogonal click chemistry to remove immunofluorescent signals from the surface of labeled cells, cycling the nanomolar-concentration reagents in seconds and enabling multiple rounds of staining of the same samples. It is non-toxic and functional in both dispersed cells and intact living tissues. We demonstrate multiparameter (n ≥ 14), non-disruptive imaging of murine peripheral blood mononuclear and bone marrow cells to profile cellular differentiation. We also show longitudinal multiplexed imaging of bone marrow progenitor cells as they develop into neutrophils over 6 days and real-time multiplexed cycling of living mouse hepatic tissues. We anticipate that SAFE will find broad utility for investigating physiologic dynamics in living systems.


Asunto(s)
Colorantes Fluorescentes , Leucocitos Mononucleares , Ratones , Animales , Colorantes Fluorescentes/química , Coloración y Etiquetado , Imagen Óptica/métodos , Técnica del Anticuerpo Fluorescente
4.
Nat Chem Biol ; 17(12): 1281-1288, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34764473

RESUMEN

Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.


Asunto(s)
Lectinas/química , Polisacáridos/química , Imagen Individual de Molécula/métodos , Bibliotecas de Moléculas Pequeñas/química , Animales , Células CHO , Membrana Celular , Permeabilidad de la Membrana Celular , Cricetulus , Cinética , Ligandos , Análisis Multivariante , Unión Proteica , Relación Estructura-Actividad
5.
Sci Immunol ; 6(61)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215680

RESUMEN

Immunotherapy is revolutionizing cancer treatment but is often restricted by toxicities. What distinguishes adverse events from concomitant antitumor reactions is poorly understood. Here, using anti-CD40 treatment in mice as a model of TH1-promoting immunotherapy, we showed that liver macrophages promoted local immune-related adverse events. Mechanistically, tissue-resident Kupffer cells mediated liver toxicity by sensing lymphocyte-derived IFN-γ and subsequently producing IL-12. Conversely, dendritic cells were dispensable for toxicity but drove tumor control. IL-12 and IFN-γ were not toxic themselves but prompted a neutrophil response that determined the severity of tissue damage. We observed activation of similar inflammatory pathways after anti-PD-1 and anti-CTLA-4 immunotherapies in mice and humans. These findings implicated macrophages and neutrophils as mediators and effectors of aberrant inflammation in TH1-promoting immunotherapy, suggesting distinct mechanisms of toxicity and antitumor immunity.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunoterapia/efectos adversos , Macrófagos del Hígado/efectos de los fármacos , Hígado/efectos de los fármacos , Neoplasias/terapia , Neutrófilos/efectos de los fármacos , Animales , Antígenos CD40/antagonistas & inhibidores , Antígenos CD40/inmunología , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Citocinas/inmunología , Humanos , Macrófagos del Hígado/inmunología , Hígado/inmunología , Ratones Transgénicos , Neoplasias/inmunología , Neutrófilos/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología
6.
Adv Sci (Weinh) ; 8(10): 2004574, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026453

RESUMEN

Tumor-associated macrophages (TAMs) promote the immune suppressive microenvironment inside tumors and are, therefore, considered as a promising target for the next generation of cancer immunotherapies. To repolarize their phenotype into a tumoricidal state, the Toll-like receptor 7/8 agonist imidazoquinoline IMDQ is site-specifically and quantitatively coupled to single chain antibody fragments, so-called nanobodies, targeting the macrophage mannose receptor (MMR) on TAMs. Intravenous injection of these conjugates result in a tumor- and cell-specific delivery of IMDQ into MMRhigh TAMs, causing a significant decline in tumor growth. This is accompanied by a repolarization of TAMs towards a pro-inflammatory phenotype and an increase in anti-tumor T cell responses. Therefore, the therapeutic benefit of such nanobody-drug conjugates may pave the road towards effective macrophage re-educating cancer immunotherapies.


Asunto(s)
Imidazoles/química , Neoplasias Pulmonares/tratamiento farmacológico , Receptor de Manosa/inmunología , Quinolinas/química , Anticuerpos de Dominio Único/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Modelos Animales de Enfermedad , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Glicoproteínas de Membrana/agonistas , Ratones Endogámicos C57BL , Ratones Noqueados , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Receptor Toll-Like 6/agonistas , Receptor Toll-Like 7/agonistas , Microambiente Tumoral
7.
J Immunother Cancer ; 9(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33589525

RESUMEN

BACKGROUND: Modulation and depletion strategies of regulatory T cells (Tregs) constitute valid approaches in antitumor immunotherapy but suffer from severe adverse effects due to their lack of selectivity for the tumor-infiltrating (ti-)Treg population, indicating the need for a ti-Treg specific biomarker. METHODS: We employed single-cell RNA-sequencing in a mouse model of non-small cell lung carcinoma (NSCLC) to obtain a comprehensive overview of the tumor-infiltrating T-cell compartment, with a focus on ti-Treg subpopulations. These findings were validated by flow cytometric analysis of both mouse (LLC-OVA, MC38 and B16-OVA) and human (NSCLC and melanoma) tumor samples. We generated two CCR8-specific nanobodies (Nbs) that recognize distinct epitopes on the CCR8 extracellular domain. These Nbs were formulated as tetravalent Nb-Fc fusion proteins for optimal CCR8 binding and blocking, containing either an antibody-dependent cell-mediated cytotoxicity (ADCC)-deficient or an ADCC-prone Fc region. The therapeutic use of these Nb-Fc fusion proteins was evaluated, either as monotherapy or as combination therapy with anti-programmed cell death protein-1 (anti-PD-1), in both the LLC-OVA and MC38 mouse models. RESULTS: We were able to discern two ti-Treg populations, one of which is characterized by the unique expression of Ccr8 in conjunction with Treg activation markers. Ccr8 is also expressed by dysfunctional CD4+ and CD8+ T cells, but the CCR8 protein was only prominent on the highly activated and strongly T-cell suppressive ti-Treg subpopulation of mouse and human tumors, with no major CCR8-positivity found on peripheral Tregs. CCR8 expression resulted from TCR-mediated Treg triggering in an NF-κB-dependent fashion, but was not essential for the recruitment, activation nor suppressive capacity of these cells. While treatment of tumor-bearing mice with a blocking ADCC-deficient Nb-Fc did not influence tumor growth, ADCC-prone Nb-Fc elicited antitumor immunity and reduced tumor growth in synergy with anti-PD-1 therapy. Importantly, ADCC-prone Nb-Fc specifically depleted ti-Tregs in a natural killer (NK) cell-dependent fashion without affecting peripheral Tregs. CONCLUSIONS: Collectively, our findings highlight the efficacy and safety of targeting CCR8 for the depletion of tumor-promoting ti-Tregs in combination with anti-PD-1 therapy.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Carcinoma Pulmonar de Lewis/terapia , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Depleción Linfocítica , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma Experimental/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores CCR8/deficiencia , Neoplasias Cutáneas/terapia , Linfocitos T Reguladores/inmunología , Animales , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/metabolismo , Terapia Combinada , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Fenotipo , Receptor de Muerte Celular Programada 1/metabolismo , RNA-Seq , Receptores CCR8/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Linfocitos T Reguladores/metabolismo
8.
Cancer Immunol Res ; 9(3): 309-323, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33361087

RESUMEN

IL1ß is a central mediator of inflammation. Secretion of IL1ß typically requires proteolytic maturation by the inflammasome and formation of membrane pores by gasdermin D (GSDMD). Emerging evidence suggests an important role for IL1ß in promoting cancer progression in patients, but the underlying mechanisms are ill-defined. Here, we have shown a key role for IL1ß in driving tumor progression in two distinct mouse tumor models. Notably, activation of the inflammasome, caspase-8, as well as the pore-forming proteins GSDMD and mixed lineage kinase domain-like protein in the host were dispensable for the release of intratumoral bioactive IL1ß. Inflammasome-independent IL1ß release promoted systemic neutrophil expansion and fostered accumulation of T-cell-suppressive neutrophils in the tumor. Moreover, IL1ß was essential for neutrophil infiltration triggered by antiangiogenic therapy, thereby contributing to treatment-induced immunosuppression. Deletion of IL1ß allowed intratumoral accumulation of CD8+ effector T cells that subsequently activated tumor-associated macrophages. Depletion of either CD8+ T cells or macrophages abolished tumor growth inhibition in IL1ß-deficient mice, demonstrating a crucial role for CD8+ T-cell-macrophage cross-talk in the antitumor immune response. Overall, these results support a tumor-promoting role for IL1ß through establishing an immunosuppressive microenvironment and show that inflammasome activation is not essential for release of this cytokine in tumors.


Asunto(s)
Interleucina-1beta/metabolismo , Neoplasias/inmunología , Neutrófilos/inmunología , Escape del Tumor , Microambiente Tumoral/inmunología , Animales , Comunicación Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Noqueados , Neoplasias/patología , Neutrófilos/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Linfocitos T Citotóxicos/inmunología , Macrófagos Asociados a Tumores/inmunología
9.
Cancers (Basel) ; 12(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266104

RESUMEN

Neuropilin-1 (NRP-1) is a co-receptor for semaphorins and vascular endothelial growth factor (VEGF) family members that can be expressed on cancer cells and tumor-infiltrating myeloid, endothelial and lymphoid cells. It has been linked to a tumor-promoting environment upon interaction with semaphorin 3A (Sema3A). Nanobodies (Nbs) targeting NRP-1 were generated for their potential to hamper the NRP-1/Sema3A interaction and their impact on colorectal carcinoma (CRC) development was evaluated in vivo through the generation of anti-NRP-1-producing CRC cells. We observed that tumor growth was significantly delayed and survival prolonged when the anti-NRP-1 Nbs were produced in vivo. We further analyzed the tumor microenvironment and observed that the pro-inflammatory MHC-IIhigh/trophic MHC-IIlow macrophage ratio was increased in tumors that produce anti-NRP-1 Nbs. This finding was corroborated by an increase in the expression of genes associated with MHC-IIhigh macrophages and a decrease in the expression of MHC-IIlow macrophage-associated genes in the macrophage pool sorted from anti-NRP-1 Nb-producing tumors. Moreover, we observed a significantly higher percentage of tumor-associated antigen-specific CD8+ T cells in tumors producing anti-NRP-1 Nbs. These data demonstrate that an intratumoral expression of NRP-1/Sema3A blocking biologicals increases anti-tumor immunity.

10.
Cells ; 9(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019594

RESUMEN

To target nanomedicines to specific cells, especially of the immune system, nanobodies can be considered as an attractive tool, as they lack the Fc part as compared to traditional antibodies and, thus, prevent unfavorable Fc-receptor mediated mistargeting. For that purpose, we have site-specifically conjugated CD206/MMR-targeting nanobodies to three types of dye-labeled nanogel derivatives: non-degradable nanogels, acid-degradable nanogels (with ketal crosslinks), and single polymer chains (also obtained after nanogel degradation). All of them can be obtained from the same reactive ester precursor block copolymer. After incubation with naïve or MMR-expressing Chinese hamster ovary (CHO) cells, a nanobody mediated targeting and uptake could be confirmed for the nanobody-modified nanocarriers. Thereby, the intact nanogels that display nanobodies on their surface in a multivalent way showed a much stronger binding and uptake compared to the soluble polymers. Based on their acidic pH-responsive degradation potential, ketal crosslinked nanogels are capable of mediating a transient targeting that gets diminished upon unfolding into single polymer chains after endosomal acidification. Such control over particle integrity and targeting performance can be considered as highly attractive for safe and controllable immunodrug delivery purposes.


Asunto(s)
Química Clic/métodos , Nanogeles/química , Humanos , Concentración de Iones de Hidrógeno
11.
J Control Release ; 314: 1-11, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31626860

RESUMEN

Radioimmunotherapy (RIT) aims to deliver a high radiation dose to cancer cells, while minimizing the exposure of normal cells. Typically, monoclonal antibodies are used to target the radionuclides to cancer cell surface antigens. However, antibodies face limitations due to their poor tumor penetration and suboptimal pharmacokinetics, while the expression of their target on the cancer cell surface may be gradually lost. In addition, most antigens are expressed in a limited number of tumor types. To circumvent these problems, we developed a Nanobody (Nb)-based RIT against a prominent stromal cell (stromal-targeting radioimmunotherapy or STRIT) present in nearly all tumors, the tumor-associated macrophage (TAM). Macrophage Mannose Receptor (MMR) functions as a stable molecular target on TAM residing in hypoxic areas, further allowing the delivery of a high radiation dose to the more radioresistant hypoxic tumor regions. Since MMR expression is not restricted to TAM, we first optimized a strategy to block extra-tumoral MMR to prevent therapy-induced toxicity. A 100-fold molar excess of unlabeled bivalent Nb largely blocks extra-tumoral binding of 177Lu-labeled anti-MMR Nb and prevents toxicity, while still allowing the intra-tumoral binding of the monovalent Nb. Interestingly, three doses of 177Lu-labeled anti-MMR Nb resulted in a significantly retarded tumor growth, thereby outcompeting the effects of anti-PD1, anti-VEGFR2, doxorubicin and paclitaxel in the TS/A mammary carcinoma model. Together, these data propose anti-MMR STRIT as a valid new approach for cancer treatment.


Asunto(s)
Adenocarcinoma/radioterapia , Neoplasias Mamarias Experimentales/radioterapia , Radioinmunoterapia/métodos , Anticuerpos de Dominio Único/inmunología , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Animales , Progresión de la Enfermedad , Doxorrubicina/farmacología , Femenino , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones , Ratones Endogámicos BALB C , Paclitaxel/farmacología , Receptores de Superficie Celular/metabolismo , Células del Estroma/inmunología
12.
J Control Release ; 299: 107-120, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30797866

RESUMEN

The tumor microenvironment of numerous prevalent cancer types is abundantly infiltrated with tumor-associated macrophages (TAMs). Macrophage mannose receptor (MMR or CD206) expressing TAMs have been shown to be key promoters of tumor progression and major opponents of successful cancer therapy. Therefore, depleting MMR+ TAMs is an interesting approach to synergize with current antitumor therapies. We studied the potential of single-domain antibodies (sdAbs) specific for MMR to target proteins to MMR+ TAMs. Anti-MMR sdAbs were genetically coupled to a reporter protein, mWasabi (wasabi green, WG), generating sdAb "drug" fusion proteins (SFPs), referred to as WG-SFPs. The resulting WG-SFPs were highly efficient in targeting MMR+ macrophages both in vitro and in vivo. As we showed that second mitochondria-derived activator of caspase (SMAC) mimetics modulate MMR+ macrophages, we further coupled the anti-MMR sdAb to an active form of SMAC, referred to as tSMAC. The resulting tSMAC-SFPs were able to bind and upregulate caspase3/7 activity in MMR+ macrophages in vitro. In conclusion, we report the proof-of-concept of an elegant approach to conjugate anti-MMR sdAbs to proteins, which opens new avenues for targeted manipulation of MMR+ tumor-promoting TAMs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Lectinas Tipo C/metabolismo , Macrófagos/efectos de los fármacos , Lectinas de Unión a Manosa/metabolismo , Receptores de Superficie Celular/metabolismo , Anticuerpos de Dominio Único/administración & dosificación , Animales , Proteínas Reguladoras de la Apoptosis/administración & dosificación , Proteínas Reguladoras de la Apoptosis/farmacología , Femenino , Células HEK293 , Humanos , Macrófagos/metabolismo , Receptor de Manosa , Ratones Endogámicos C57BL , Proteínas Mitocondriales/administración & dosificación , Proteínas Mitocondriales/farmacología , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Dominio Único/farmacología , Microambiente Tumoral/efectos de los fármacos
13.
Mol Imaging Biol ; 21(5): 898-906, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30671739

RESUMEN

PURPOSE: Macrophage mannose receptor (MMR, CD206) expressing tumor-associated macrophages (TAM) are protumorigenic and was reported to negatively impact therapy responsiveness and is associated with higher chances of tumor relapse following multiple treatment regimens in preclinical tumor models. Since the distribution of immune cells within the tumor is often heterogeneous, sampling "errors" using tissue biopsies will occur. In order to overcome this limitation, we propose positron emission tomography (PET)/X-ray computed tomography (CT) imaging using 68Ga-labeled anti-MMR single-domain antibody fragment (sdAb) to assess the presence of these protumorigenic TAM. PROCEDURES: Cross-reactive anti-MMR-sdAb was produced according to good manufacturing practice (GMP) and conjugated to p-SCN-Bn-NOTA bifunctional chelator for 68Ga-labeling. Biodistribution and PET/CT studies were performed in wild-type and MMR-deficient 3LL-R tumor-bearing mice. Biodistribution data obtained in mice were extrapolated to calculate radiation dose estimates for the human adult using OLINDA software. A 7-day repeated dose toxicity study for NOTA-anti-MMR-sdAb was performed in healthy mice up to a dose of 1.68 mg/kg. RESULTS: [68Ga]Ga-NOTA-anti-MMR-sdAb was obtained with 76 ± 2 % radiochemical yield, 99 ± 1 % radiochemical purity, and apparent molar activity of 57 ± 11 GBq/µmol. In vivo biodistribution analysis showed fast clearance via the kidneys and retention in MMR-expressing organs and tumor, with tumor-to-blood and tumor-to-muscle ratios of 6.80 ± 0.62 and 5.47 ± 1.82, respectively. The calculated effective dose was 0.027 mSv/MBq and 0.034 mSv/MBq for male and female, respectively, which means that a proposed dose of 185 MBq in humans would yield a radiation dose of 5.0 and 6.3 mSv to male and female patients, respectively. In the toxicity study, no adverse effects were observed. CONCLUSIONS: Preclinical validation of [68Ga]Ga-NOTA-anti-MMR-sdAb showed high specific uptake of this tracer in MMR-expressing TAM and organs, with no observed toxicity. [68Ga]Ga-NOTA-anti-MMR-sdAb is ready for a phase I clinical trial.


Asunto(s)
Carcinogénesis/patología , Radioisótopos de Galio/metabolismo , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/patología , Lectinas de Unión a Manosa/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Receptores de Superficie Celular/metabolismo , Anticuerpos de Dominio Único/metabolismo , Investigación Biomédica Traslacional , Animales , Femenino , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Humanos , Macrófagos/metabolismo , Receptor de Manosa , Ratones Endogámicos C57BL , Unión Proteica , Radiometría , Distribución Tisular
14.
Bioconjug Chem ; 29(7): 2394-2405, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29889515

RESUMEN

Tumor-associated macrophages (TAMs) with high expression levels of the Macrophage Mannose Receptor (MMR, CD206) exhibit a strong angiogenic and immune suppressive activity. Thus, they are a highly attractive target in cancer immunotherapy, with the aim to modulate their protumoral behavior. Here, we introduce polymer nanogels as potential drug nanocarriers which were site-specifically decorated with a Nanobody (Nb) specific for the MMR. Using azide-functionalized RAFT chain transfer agents, they provide access to amphiphilic reactive ester block copolymers that self-assemble into micelles and are afterwards core-cross-linked toward fully hydrophilic nanogels with terminal azide groups on their surface. MMR-targeting Nb can site-selectively be functionalized with one single cyclooctyne moiety by maleimide-cysteine chemistry under mildly reducing conditions which enables successful chemoorthogonal conjugation to the nanogels. The resulting Nb-functionalized nanogels were highly efficient in targeting MMR-expressing cells and TAMs both in vitro and in vivo. We believe that these findings pave the road for targeted eradication or modulation of pro-tumoral MMRhigh TAMs.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Portadores de Fármacos/síntesis química , Inmunoterapia/métodos , Lectinas Tipo C/inmunología , Macrófagos/efectos de los fármacos , Lectinas de Unión a Manosa/inmunología , Neoplasias/terapia , Receptores de Superficie Celular/inmunología , Alquinos , Azidas , Reacción de Cicloadición , Humanos , Receptor de Manosa , Micelas , Neoplasias/inmunología , Polímeros
15.
FEBS J ; 285(4): 777-787, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28834216

RESUMEN

Tumor-associated macrophages (TAM) are by now established as important regulators of tumor progression by impacting on tumor immunity, angiogenesis, and metastasis. Hence, a multitude of approaches are currently pursued to intervene with TAM's protumor activities, the most advanced of which being a blockade of macrophage-colony stimulating factor (M-CSF)/M-CSF receptor (M-CSFR) signaling. M-CSFR signaling largely impacts on the differentiation of macrophages, including TAM, and hence strongly influences the numbers of these cells in tumors. However, a repolarization of TAM toward a more antitumor phenotype may be more elegant and may yield stronger effects on tumor growth. In this respect, several aspects of TAM behavior could be altered, such as their intratumoral localization, metabolism and regulatory pathways. Intervention strategies could include the use of small molecules but also new generations of biologicals which may complement the current success of immune checkpoint blockers. This review highlights current work on the search for new therapeutic targets in TAM.


Asunto(s)
Macrófagos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Humanos , Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Front Immunol ; 8: 289, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28360914

RESUMEN

Macrophages are not only essential components of innate immunity that contribute to host defense against infections, but also tumor growth and the maintenance of tissue homeostasis. An important feature of macrophages is their plasticity and ability to adopt diverse activation states in response to their microenvironment and in line with their functional requirements. Recent immunometabolism studies have shown that alterations in the metabolic profile of macrophages shape their activation state and function. For instance, to fulfill their respective functions lipopolysaccharides-induced pro-inflammatory macrophages and interleukin-4 activated anti-inflammatory macrophages adopt a different metabolism. Thus, metabolic reprogramming of macrophages could become a therapeutic approach to treat diseases that have a high macrophage involvement, such as cancer. In the first part of this review, we will focus on the metabolic pathways altered in differentially activated macrophages and link their metabolic aspects to their pro- and anti-inflammatory phenotype. In the second part, we will discuss how macrophage metabolism is a promising target for therapeutic intervention in inflammatory diseases and cancer.

17.
Curr Opin Oncol ; 29(1): 55-61, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27792052

RESUMEN

PURPOSE OF REVIEW: Tumors contain not only cancer cells but also nontransformed types of cells, the stromal cells. A bidirectional interplay exists between transformed and nontransformed cells leading to tumor progression and metastasis. Tumor-associated macrophages (TAMs) are the most abundant tumor-infiltrating leukocytes characterized by a high heterogeneity and plasticity. TAMs exhibit strong protumoral activities and are related to bad prognosis and worse overall survival in various cancer types. RECENT FINDINGS: Recent progress has delineated the existence of distinct TAM subsets in primary tumors and metastatic sites regulated by diverse mechanisms and triggering strong protumoral functions such as immunossuppression, angiogenesis, metastasis and resistance to current therapies. SUMMARY: Delineating the regulatory pathways governing TAM heterogeneity and activation could present a novel frontier in cancer therapy. TAM targeting/repolarization is considered as a promising novel therapeutic modality in combination with standard-of-care therapies or immuno checkpoint blockers.


Asunto(s)
Macrófagos/patología , Neoplasias/patología , Microambiente Tumoral , Animales , Transformación Celular Neoplásica , Progresión de la Enfermedad , Humanos
18.
Nat Commun ; 7: 13720, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28008905

RESUMEN

Various steady state and inflamed tissues have been shown to contain a heterogeneous DC population consisting of developmentally distinct subsets, including cDC1s, cDC2s and monocyte-derived DCs, displaying differential functional specializations. The identification of functionally distinct tumour-associated DC (TADC) subpopulations could prove essential for the understanding of basic TADC biology and for envisaging targeted immunotherapies. We demonstrate that multiple mouse tumours as well as human tumours harbour ontogenically discrete TADC subsets. Monocyte-derived TADCs are prominent in tumour antigen uptake, but lack strong T-cell stimulatory capacity due to NO-mediated immunosuppression. Pre-cDC-derived TADCs have lymph node migratory potential, whereby cDC1s efficiently activate CD8+ T cells and cDC2s induce Th17 cells. Mice vaccinated with cDC2s displayed a reduced tumour growth accompanied by a reprogramming of pro-tumoural TAMs and a reduction of MDSCs, while cDC1 vaccination strongly induces anti-tumour CTLs. Our data might prove important for therapeutic interventions targeted at specific TADC subsets or their precursors.


Asunto(s)
Células Dendríticas/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral , Células Cultivadas , Humanos , Inmunoterapia/métodos , Macrófagos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Monocitos/inmunología , Neoplasias/patología , Neoplasias/terapia , Subgrupos de Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...